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ABSTRACT 
 

Vibration based techniques of structural damage detection using model updating method, are 
computationally expensive for large-scale structures. In this study, after locating precisely 
the eventual damage of a structure using modal strain energy based index (MSEBI), To 
efficiently reduce the computational cost of model updating during the optimization process 
of damage severity detection, the MSEBI of structural elements is evaluated using properly 
trained cascade feed-forward neural network (CFNN). In order to achieve an appropriate 
artificial neural network (ANN) model for MSEBI evaluation, a set of feed-forward artificial 
neural networks which are more suitable for non-linear approximation, are trained. All of 
these neural networks are tested and the results demonstrate that the CFNN model with log-
sigmoid hidden layer transfer function is the most suitable ANN model among these selected 
ANNs. Moreover, to increase damage severity detection accuracy, the optimization process 
of damage severity detection is carried out by particle swarm optimization (PSO) whose cost 
function is constructed based on MSEBI. To validate the proposed solution method, two 
structural examples with different number of members are presented. The results indicate 
that after determining the damage location, the proposed solution method for damage 
severity detection leads to significant reduction of computational time compared to finite 
element method. Furthermore, engaging PSO algorithm by efficient approximation 
mechanism of finite element (FE) model, maintains the acceptable accuracy of damage 
severity detection. 
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1. INTRODUCTION 
 

Nowadays, Vibration based technique as a structural health monitoring (SHM) tool to 
identify and assess damage is employed for various methods of structural damage detection. 
SHM exerting vibration measurements are global methods that detect damage parameters 
based on the principle that disruption of the structural performance due to damage in a 
structure changes its vibration parameters, namely, natural frequencies, mode shapes and 
damping characteristics [1].  

In recent years, various types of algorithms based on Artificial Intelligence (AI) 
techniques for damage detection have been applied. The methods are broadly divided into 
five categories as follows: (1) neural network techniques [2], (2) support vector machine 
techniques [3], (3) fuzzy inference techniques [4], (4) genetic algorithm (GA) techniques 
[5], (5) hybrid techniques [6]. 

The artificial neural network (ANN) model is robust and fault tolerant [7]. ANN can also 
effectively deal with qualitative, uncertain, and incomplete information, making it highly 
promising for detecting structural damage. The feasibility of applying these networks to 
detect structural damage has received considerable attention. ANN based methodology has 
been used in two broad domain of structural damage detection procedure: (1) As a 
promising technique in the domain of inverse damage detection problem to ascertain the 
damage parameters (location and severity) [2]. (2) As an appropriate approximation 
mechanism of finite element (FE) model, in the domain of model based damage detection 
problems which has been typically used for composite beams damage detection [8]. 

Detection of damage severity is effectively the solution to the inverse problem [9]. 
However, it may be necessary in many cases to solve the forward problem to generate data 
for the solution to the inverse problem. Generation of data is usually computationally 
expensive and ANN models are created to reduce the computational expense. Simulation of 
(ANN) model as an efficient approximation mechanism (EAM) of finite element (FE) model 
as a response of updating damaged structure which is employed in the optimization loop 
through an inverse process to ascertain the damage parameters (damage severity), can 
replace expensive numerical simulations while enhancing computation efficiency. The 
trained ANN model provides an approximation of the numerical model. In this case, an 
optimization algorithm has been customized using ANN approximations of numerical model 
to detect damage severities in structural systems. In this paper to speed up effectively 
optimization process of damage severity detection in structural systems, a very efficient 
approximation mechanism of finite element (FE) model of the structure has been introduced 
and developed by using cascade feed forward type of artificial neural networks (CFNNs). In 
this proposed method a CFNN has been trained by a training dataset whose inputs are 
damage severities of failure scenarios and outputs are corresponding modal strain energy 
based indexes (MSEBIs). Using ANN model in process of damage severity detection done 
by optimization algorithm accelerates this process besides of maintaining the acceptable 
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detection accuracy. 
In this study, after detecting the exact location of damage occurrence using MSEBI 

indicator, to detect the damage severity in structural systems, the particle swarm 
optimization (PSO) algorithm engaged by CFNN model with log-sigmoid hidden layer 
transfer function has been applied. Results of damage severity detection obtained from 
proposed solution procedure are compared with those obtained from PSO engaged by FE 
model in terms of computational time and accuracy. Moreover, in order to improve detection 
accuracy of damage severity, an objective function based on MSEBI has been proposed. 
This proposed cost function representing the errors between measured or actual MSEBIs and 
those predicted by trained ANN models or FE models, has been minimized by PSO. To 
achieve an appropriate ANN model as an EAM of FE model, some types of feed-forward 
artificial neural networks which are more suitable for non-linear approximation, are selected 
[10]. This set of selected ANNs includes back propagation neural network (BPNN) with log-
sigmoid transfer function for hidden layer, BPNN with hyperbolic tangent sigmoid transfer 
function, cascade feed-forward neural network (CFNN) with radial basis transfer function, 
CFNN with log-sigmoid transfer function and radial basis function neural network 
(RBFNN) with wavelet packet transfer function (WRBF) [11]. Appropriate ANN model is 
distinguished among these networks based on its best performance on specific testing 
datasets. In order to generate failure scenarios which are training and testing datasets to span 
the design space, completely, latin hypercube sampling (LHS) method has been applied. A 
200-bar double-layer grid and a 216-bar dome truss are studied to demonstrate the efficiency 
of proposed solution procedure.  

The present paper is organized as follows:  
In Section 2, we describe the CFNN design structure. MSEBI indicator and proposed 

objective function based on MSEBI are represented in Sections 3 and 4, respectively. 
Description of PSO algorithm is brought in section 5. Procedure of achieving an appropriate 
neural network is expressed in Section 6. Solution procedure of damage detection and LHS 
method are described in section 7. Examples are studied in Section 8 and conclusions are 
presented in Section 9. 
 
 

2. CASCADE FEED-FORWARD NEURAL NETWORKS 
 
A common type of feed-forward ANNs is constructed by a layer of inputs, a layer of output 
neurons, and one or more hidden layers of neurons. Feed-forward ANNs are used typically 
to parameter prediction and data approximation. 

A cascade type of feed-forward ANNs consists of a layer of input, a layer of output 
neurons, and one or more hidden layers. Similar to a common type of feed-forward ANNs, 
the first layer has weights coming from the input. But each subsequent layer has weights 
coming from the input and all previous layers. All layers have biases. The last layer is the 
network output. Each layer’s weights and biases must be initialized. A supervised training 
method is used to train considered cascade feed-forward ANNs [12]. The additional 
connections in cascade feed-forward neural network (CFNN) improve the speed at which 
the network learns the desired relationship [13]. The Cascade-Correlation architecture has 
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several advantages over existing algorithms: it learns very quickly, the network determines 
its own size and topology and it retains the structures it has built even if the training set 
changes[14]. Fig. 1 shows the general structure of cascade feed-forward neural network. 

 

 
Figure 1. Cascade feed-forward neural network general structure 

 
 

3. MODAL STRAIN ENERGY BASED INDEX (MSEBI) 
 

In this study, an objective function has been constructed using efficient index based on the 
modal strain energy (MSE) to accurately detect the damage severity of the suspected 
elements of a damaged structure. The modal analysis uses the overall mass and stiffness of a 
structure to find its natural frequencies and mode shapes. It has the mathematical form of 
[15]: 
 

(1)

 
where  and  are the stiffness and mass matrices of the structure, respectively;  and 

 are the th circular frequency and mode shape vector of the structure, respectively. Also, 
 is the total degrees of freedom of the structure. The mode shapes are usually 

normalized with respect to the mass matrix and therefore the relations  and 

 can be established. 
Since the mode shape vectors are equivalent to nodal displacements of a vibrating 

structure, therefore in each element of the structure has the strain energy been stored. The 
strain energy of a structure due to mode shape vector are usually referred to as modal strain 
energy (MSE) and can be considered as a valuable parameter for damage identification. The 

modal strain energy of th element in th mode of the structure can be expressed as: 
 

(2)
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where  is the stiffness matrix of th element of the structure and  is the vector of 
corresponding nodal displacements of element  in th mode. The total modal strain energy 
of th mode of the structure can also be determined by summation of MSE of all elements 

, given by 
 

(3)

 
For computational purpose, it is better to normalize the MSE of elements with respect to 

the total MSE of the structure: 
 

(4)

 
where  is the normalized MSE of th element in th mode of the structure. The 

mean of Eq. (4) for the first  modes can now be selected as an efficient parameter as 
 

(5)

 
In general, when damage occurs in a structural element, it can be simulated by decreasing 

one of the stiffness parameters of the element such as the elasticity modulus ( ) cross 
sectional area ( ), moment of inertia ( ) and so on. Therefore, the damage occurrence is led 
to increasing the MSE and consequently the efficient parameter . As a result, in 
this study, by determining the efficient parameter  for each element of healthy and 
damaged structures denoted here as and respectively, an efficient 
indicator for estimating the presence and severity of the damage in the element can be 
defined. This indicator termed here as modal strain energy based index (  ) and can be 
determined as 

 

(6)

 
It should be noted that, as the damage locations are unknown for the damaged structure 

with respect to real data applications, therefore for this case the element stiffness matrix of 
the healthy structure is used for estimating the parameter . According to the Eq. 
(6), for a healthy element the index will be equal to zero ( ) and for a damaged 
element the index will be greater than zero ( ) [16]. 
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4. THE PROPOSED OBJECTIVE FUNCTION FORMULATION OF THE 
OPTIMIZATION PROBLEM BASED ON MSEBI 

 
In this section, an objective function to detect damage severity based on modal strain 

energy based index has been presented. A root squared error between measured  
( ) and  predicted by trained ANN models or FE models as an objective 
function in order to determine the damage severities of suspected elements can be expressed 
as: 

 

 

(7)

 
where,  is root square error of modal strain energy based index and  is the 

number of structure elements. 
 
 

5. PARTICLE SWARM OPTIMIZATION 
 

In this paper a particle swarm optimization (PSO) is applied to determine the damage 
severity. PSO finds a set of reduced damage variables  minimizing the RSEMSEBI as: 
 

(8)

 
where  is a given set of discrete values and damage severities  can 

take values only from this set. Also,  is an objective function that should be minimized. 
The PSO has been inspired by the social behavior of animals such as fish schooling, 

insect swarming and bird flocking [17]. It involves a number of particles, which are 
initialized randomly in the search space of an objective function. These particles are referred 
to as swarm. Each particle of the swarm represents a potential solution of the optimization 
problem. The particles fly through the search space and their positions are updated based on 
the best positions of individual particles in each iteration. The fitness values of particles are 
obtained to determine, which position in the search space is the best. In  iteration, the 
swarm is updated using the following equations: 

 
(9)

(10)
 
where  and  represent the current position and velocity vectors of the ith particle, 

respectively;  is the best previous position of the  particle and  is the best global 



STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD... 

 

457

position among all the particles in the swarm;  and  are two uniform random sequences 
generated from interval [0,1];  and  are the cognitive and social scaling parameters, 
respectively and  is the inertia weight used to discount the previous velocity of particle 
preserved. The inertia weight  may be defined to vary linearly from a maximum value 

 to a minimum value .Velocity vector  is limited to a lower bound  and an 
upper bound [6]. 
 
 

6. PROCEDURE OF ACHIEVING AN APPROPRIATE NEURAL NETWORK 
 
It is reported that ANNs with two hidden layers are sufficient for S type (Eqs. (12) and (13)) 
(Sigmoid and Hyperbolic tangent functions). However, for a small ANN, we can’t be sure 
that an ANN with two hidden layers is better than one with only one hidden layer [19]. 
Therefore one hidden layer is chosen. 

Primary studies show that the pure line activation function (Eq. (11)) for output layer is 
more advantageous than the S type activation function (Eqs. (12) and (13)). In this study 
some types of feed-forward artificial neural networks which are more suitable for non-linear 
approximation, are selected [10]. This set of selected ANNs includes back propagation 
neural network (BPNN) with log-sigmoid transfer function for hidden layer, BPNN with 
hyperbolic tangent sigmoid transfer function, cascade feed-forward neural network (CFNN) 
with radial basis transfer function, CFNN with log-sigmoid transfer function and radial basis 
function neural network (RBFNN) with wavelet packet transfer function (WRBF) [11]. 
Network architecture of all the selected ANNs are the same, includes a layer of inputs, a 
layer of output neurons, and one hidden layers of neurons. ANN inputs are damage 
severities of failure scenarios and outputs are MSEBIs. It is the underlying principle that the 
number of hidden layer neurons must be two or three times or somewhat bigger than the 
number of input feature [20]. In order to distinguish an appropriate ANN Among these 
networks, at first, 500 damage scenarios as training and testing datasets are empirically 
generated using LHS method for training and testing the set of selected ANNs. Then, a 
suitable network is selected based on the root mean square error (RMSE) of testing datasets. 

 

 (11)

 (12)

 (13)

 
 

7. PROCEDURE OF DAMAGE DETECTION 
 

The step by step procedure of damage detection is summarized as follows: 
Step 1: computing the MSEBI for all the structural elements to determine suspected 

elements; the elements whose MSEBI values are greater than zero. 
Step 2: generating failure scenarios with the damage severity range between 0.1 and 0.5 
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with the pace of 0.1, when the number of suspected elements is determined. 
Step 3: developing a finite element (FE) model which computes the mode shapes of the 

structure and finally the MSEBI for each element corresponding to the failure scenarios that 
have been defined in the previous step. 

Step 4: using the finite element (FE) model of the structure in order to generate training 
and testing datasets for development of ANN model that is used in the optimization process 
of damage severity detection. 

Step 5: engaging directly the ANN model by the optimizer to evaluate the objective 
function to be minimized to determine the damage severities of suspected elements. 

In this study, in order to generate failure scenarios which completely span the design 
space, Latin Hypercube Sampling (LHS) method has been applied. LHS generates a sample 
of plausible collections of parameter values from a multidimensional distribution. The LHS 
was described by McKay in 1979 [18]. 

In order to get real simulations by CFNN, and also to decrease required training data sets, 
to determine the number of necessary training and testing data sets for development of ANN 
model, specific convergence criteria is selected. 
 
 

8. NUMERICAL RESULTS AND DISCUSSIONS 
 
8.1 Example 1: 200-bar double-layer grid 

A 200-bar and  double-layer grid with a height of 1.6 m is considered as the 
first example. The top, bottom and diagonal layers of the double-layer grid are shown in Fig. 
2. The structure is supported on the corner nodes of the bottom layer. The material 
properties of elements include Young’s modulus of  2.1×102  and mass density of 
ρ=7850 . The cross sectional areas of elements in diagonal, bottom and top layers are 

,  and , respectively. Table 4 represents two 
damage scenarios having damage severities, expressed in ratios of elasticity modulus 
reduction, ranging from 10% to 50%. 
 

Table 1: Damage scenarios 

Scenario 
Damaged 

element ID 
Damage 
severity 

Scenario 
Damaged 

element ID 
Damage 
severity 

A 

7 0.1 

B 

4 0.5 
21 0.2 19 0.25 
39 0.3 24 0.3 
42 0.3 38 0.15 
54 0.1 50 0.4 
73 0.4 68 0.45 
91 0.4 82 0.2 
102 0.5 101 0.5 
166 0.3 142 0.1 
178 0.5 191 0.5 
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Figure 2. Double-layer grid with 200 elements 

 
8.1.1 Finding the damage location using MSEBI 

In the first stage of identifying the induced damage, the modal strain energies of different 
elements of the double-layer grid for both healthy and damaged structures are determined at 
first and then, the indicator MSEBI is evaluated via the Eq. (6). Figs. 3 and 4 show the value 
of MSEBI versus element number for scenarios A and B, respectively. 

 

 
Figure 3. Suspected damage elements in double-layer grid (Scenario A) 
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Figure 4. Suspected damage elements in double-layer grid (Scenario B) 

 
It can be seen from Figs. 3 and 4 that for the damages considered, the MSEBI of 

suspected elements in the both scenarios are detected as nonzero values, while other 
elements’ MSEBIs are zero.  

 
8.1.2 Determining the damage severity using PSO engaged by FE model vs. PSO engaged 
by ANN model 

At this stage the reduced damage detection problem having fewer damage variables instead 
of 200 original ones can be solved via the optimization algorithm. In this section, the new 
procedure for solving the damage severity problem has been proposed. This procedure 
contains the PSO algorithm which has been engaged by an appropriate ANN model as an 
updating model in optimization process of damage severity detection. The PSO is employed 
to find a set of damage severity variables minimizing the RSEMSEBI of Eq. (7). The PSO 
algorithm with the specifications listed in Table 2 is applied to solve the problem. 
 

Table 2: The specifications of the PSO algorithm 

Parameter Description Value 
npop The number of particles 50 
niter The maximum number of iterations 200 
C1 Cognitive parameter 2.0 
C2 Social parameter 2.0 

 Minimum of inertia weight 0.4 

 Maximum of inertia weight 0.9 

 
8.1.2.1 Determining the damage severity using PSO engaged by FE model 

In this panel, an inverse problem of damage severity detection has been solved by PSO 
which has been engaged by direct finite element updating model. Figs. 5 and 6 show the 
results of damage severity detection of suspected elements obtained by this solution 
procedure. 
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Figure 5. Damage severity of elements in double-layer grid (Scenario A) 

 

 
Figure 6. Damage severity of elements in double-layer grid (Scenario B) 

 
Figs. 5 and 6 show that the proposed cost function based on MSEBI for PSO algorithm 

determine the damage severities with a high accuracy. But to achieve such an outcome was 
time consuming process that takes about 3,900 seconds. In order to reduce this time, an 
effective solution method which has been presented in this study is used and fully explained 
in the next section. (core™ i5 2.67 GHz CPU) 

 
8.1.2.2 Determining the damage severity using PSO engaged by an appropriate ANN model 
(CFNN model with log-sigmoid transfer function)  

8.1.2.2.1 Distinguishing an appropriate ANN model as an efficient approximation 
mechanism of FE model 

In this panel, damage severities have been determined using PSO engaged by distinguished 
appropriate ANN model. ANN inputs are damage severities of failure scenarios (in this 
example 10 damaged elements) and outputs are MSEBIs. After testing the networks for 
different number of MSEBIs as the number of output matrix features based on error of 
damage severity detection accuracy, the 50 is selected as an optimum number of output layer 
neurons. Number of training and testing datasets is equal to 500 as mentioned in section 6. 
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Table 3 shows the root mean square error (RMSE) of testing datasets for set of selective 
ANNs for each damage scenario. As it comes from this table, it can be seen that the CFNN 
with log-sigmoid transfer function has the lowest RMSE, so this ANN is chosen as an EAM 
of finite element (FE) model. 

 
Table 3: The RMSE of testing datasets 

 
CFNN with 

RBF transfer 
func. 

CFNN with log-
sigmoid 

transfer func.

BPNN with 
log-sigmoid 

transfer func.

BPNN with 
tan-sigmoid 

transfer func. 
WRBFNN 

Scenario A 0.0016 0.0015 0.0017 0.0017 0.0421 
Scenario B 0.0018 0.0014 0.0019 0.0020 0.0401 

 
8.1.2.2.2 Adjusting the properties of the selected ANN (CFNN model with log-sigmoid 
transfer function) 

In this example, number of input features (neurons) is equal to number of suspected 
elements (10), number of output features (neurons) is equal to 50 as outlined in the above 
sections and number of hidden neurons is 20 for CFNN. Given that the total number of 
damage scenarios per 10 marked suspected elements for this 200-bar double-layer grid with 

the damage severity range between 0.1 and 0.5 with the pace of 0.1 is equal to  (Eq. 
(14)), determining the sufficient number of training and testing datasets is necessary. In 
order to determine the effect of number of datasets on final prediction of CFNN, the root 
mean square error of testing datasets for different number of training and testing datasets has 
been calculated and results are illustrated in Fig. 7. 
 

(14)
 
where  is the number of existing damage severities and  is the number of damaged 

elements. 
 

 
Figure 7. RMSE of testing datasets as a function of the number of training and testing datasets 
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Fig. 7 shows that if the number of datasets is greater than 300, the RMSE of testing 
datasets is settled down approximately to a straight line; so some points which are larger 
than 300 may have a small advantage for training the CFNN. But the other hand, CFNN 
training with a larger number of training datasets takes a more time. 

 
8.1.2.2.3 Results of damage severity detection using PSO engaged by CFNN model 

Figs. 8 and 9 show the results of damage severity detection using PSO engaged by CFNN 
model with log-sigmoid transfer function and adjusted properties. 
 

 
Figure 8. Damage severity of elements in double-layer grid (Scenario A) 

 

 
Figure 9. Damage severity of elements in double-layer grid (Scenario B) 

 
Figs. 8 and 9 show the damage severities of suspected elements for both A and B damage 

scenarios. As the results show the damage severities are detected with acceptable accuracy. 
For scenario A, the maximum error (Eq. (15)) of damage severity detection is equal to 6.51 
percent for damaged element number 54 and the minimum error is equal to 5.02E-5 percent 
for damaged element number 42. For scenario B, the maximum error of damage severity 
detection is equal to 6.68 percent for damaged element number 142 and the minimum error 
is equal to 9.67E-4 percent for damaged element number 50. This detection accuracy besides 
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of considerable reduction of computational cost, can effectively lead to efficient damage 
detection solution method for large-scale structures. Finally, in order to illustrate the 
desirable performance of proposed method, comprehensive comparison is given in the next 
section. 

 

(15)

 
8.1.3 Comparison between two solution procedures of damage severity detection in terms of 
computational speed and accuracy 

In this section, the proposed method of using appropriate ANN model instead of FE model 
as an updating model in optimization process of damage severity detection has been 
analyzed and compared. In all of the solution procedures, PSO specifications are the same. 
Table 5 shows the results of comparing between two solution methods in terms of 
computational speed and accuracy. To compute process time when using an ANN model, 
data generation time, training and testing time and PSO implementation time are considered 
together. (core™ i5 2.67 GHz CPU) 

 
Table 4: Comparison the results between two solution methods in terms of computational speed 

and accuracy 

 
Damage severity detection 

process time (sec) 
RMSE of determined 

damage severity 
FE model 3829 5.12e-07 
CFNN with RBF transfer 
function Model 

606 0.0454 

CFNN with log-sigmoid 
transfer function model 

410 0.0129 

BPNN with log-sigmoid 
transfer function model 

330 0.0139 

BPNN with tan-sigmoid 
transfer function model 

367 0.0375 

WRBFNN model 159 0.0493 
 
Firstly, it can be concluded from Table 4 that the idea of using an ANN model as an 

EAM of FE model, substantially reduces the computation time of damage severity detection. 
By this proposed solution method, computation time of proposed procedure is reduced to 
one-twelfth of the former one. Using ANN model in process of damage severity detection 
done by optimization algorithm accelerates this process besides of maintaining the 
acceptable detection accuracy.  

Secondly, it can be observed from Table 4 that the PSO engaged by WRBF neural 
network has the least computational time, but this solution procedure compared to others is 
the least accurate. Thus, this ANN model is not appropriate approximation mechanism for 
FE model. 
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Finally, among these ANN models, CFNN with log-sigmoid hidden layer transfer 
function have generally the best performance with regard to both time and accuracy 
parameters.  

In Fig. 10 the convergence history of PSO cost function ( ) value for different 
models which has been engaged by PSO algorithm versus the maximum number of 
iterations (200) has been illustrated. 

 

 
 

 
Figure 10. The convergence history of PSO in double-layer grid 

 
As the Fig. 10 illustrates, the CFNN model with log-sigmoid transfer function has the 

least cost function value for the first iteration of PSO, it leads to increase the speed of PSO 
convergence. Direct FE model as model updating has the most cost function value for the 
first iteration and for this model, PSO has the least speed of convergence.  

Furthermore, using ANN model as an efficient approximation mechanism of FE model in 
the optimization process leads to just 300 FE structure analyses in order to generate training 
and testing dataset for ANN model, whereas using direct FE model as an updating model in 
this process, leads to 10000 FE structure analyses which is equal to maximum number of 
PSO cost function computation based on Eq. (15). 
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 (15)
 
where  is swarm population whose value is 50 and  is maximum number of 

PSO iteration whose value is 200. As can be considered, using this new solution procedure 
contributes to a substantial reduction in the number of FE structural analysis which shows 
itself in damage severity detection of large-scale structures. 

 
8.2 Example 2: A 216-bar diamatic dome 

A 216-bar diamatic dome with the diameter and height of 33  and 10  is considered as the 
second example. The cross sectional areas of all elements are 50 . The mass density and 
Young’s modulus are assumed to be  and . Fig. 11 
represents an overview of this structure. In order to study the effect of different number of 
suspected elements on proposed solution procedure, two different damage scenarios as 
shown in Table 5 are assumed in this example. 
 

 

 
Figure 11. 216-bar diamatic dome 
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Table 5: Damage scenarios 

Scenario 
Damaged 

element ID 
Damage 
severity 

Scenario 
Damaged 

element ID 
Damage 
severity 

A 
5 0.32

B 

3 0.15 
52 0.14 29 0.25 
83 0.15 44 0.3 

 

114 0.26 78 0.35 
149 0.35 82 0.43 
200 0.45 92 0.4 

 

143 0.45 
153 0.5 
175 0.2 
196 0.5 
211 0.3 
215 0.4 

 
8.2.1 Finding the damage location using MSEBI 

Since it is difficult to obtain all mode shapes of structures, due to sensor noise or a limited 
number of sensors, MSEBI indicator is extracted based on first five mode shapes of the 
structure which has been used in both examples [21]. Results show that despite this issue, 
suspected elements have been identified with good accuracy. Figs. 12 and 13 show the value 
of MSEBI versus element number for scenarios A and B, respectively. 

 

 
Figure 12. Suspected damage elements in diamatic dome (Scenario A) 
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Figure 13. Suspected damage elements in diamatic dome (Scenario B) 

 
8.2.2 Determining the damage severity using PSO engaged by FE model vs. PSO engaged 
by distinguished appropriate ANN model (CFNN) 

For this example, after determining damage severity using PSO engaged by direct FE model 
for both A and B damage scenarios, these damage variables are determined using PSO 
engaged by the CFNN model with log-sigmoid hidden layer transfer function and 300 
training and testing datasets which has been distinguished as an appropriate ANN 
approximation mechanism of FE model, previously. Figs. 14 and 15 show the results of 
damage severity detection of suspected elements in scenarios A and B using PSO engaged 
by FE model, respectively. Also, Figs. 16 and 17 show the results of damage severity 
detection of suspected elements using PSO engaged by CFNN model. 
 

 
Figure 14. Damage severity of elements using direct FE model in diamatic dome (Scenario A) 
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Figure 15. Damage severity of elements using direct FE model in diamatic dome (Scenario B) 

 

 
Figure 16. Damage severity of elements using CFNN model in diamatic dome (Scenario A) 

 

 
Figure 17. Damage severity of elements using CFNN model in diamatic dome (Scenario B) 

 



H. Fathnejat, P. Torkzadeh, E. Salajegheh and R. Ghiasi 

 

470 

In this example, different damage scenarios were studied. According to these results, it is 
observed that the obtained severities have an acceptable accuracy and thus the proposed 
solution procedure is not sensitive to the number of suspected elements. 

 
 

9. CONCLUSION 
 

In this paper, after locating the damage occurrence in the structure using MSEBI indicator, 
an efficient solution procedure was proposed for damage severity detection in structural 
systems. Based on this new solution procedure, to reduce effectively computational time of 
model updating during the process of damage severity detection done by optimization 
algorithm, the PSO algorithm as an optimizer was engaged by an appropriate ANN model as 
an EAM of direct FE model. Moreover, to improve the accuracy of damage severity 
detection a PSO cost function based on MSEBI was minimized. In order to assess the 
performance of this proposed solution procedure, two space structures were studied as 
representative of large-scale structures. Based on the numerical results, the following 
conclusions can be resulted: 

1- The computational time of damage severity detection using PSO engaged by ANN 
model as an EAM of FE model is significantly reduced compared to using direct FE model 
based PSO (about one-twelfth). Using this new solution procedure contributes to a 
substantial reduction in the number of FE structural analysis (about One-thirtieth) which is 
further highlighted in damage severity detection of large-scale structures. 

2-  In order to achieve an appropriate ANN model, a set of feed-forward artificial neural 
networks which are more suitable for non-linear approximation, are trained and tested by 
testing datasets. Results of ANNs’ testing showed that the CFNN with log-sigmoid transfer 
function has the best performance among other selective neural networks. 

3- In order to increase damage severity detection accuracy using PSO, a new objective 
function based on MSEBI was presented for PSO. The results showed the efficiency of 
damage severity detection besides contributing to a considerable reduction of computation 
cost using PSO with MSEBI based objective function engaged by CFNN as an updating 
model in optimization process. 

4- MSEBI indicator which has been applied in both locating damage occurrence and 
constructing PSO cost function is extracted based on first five mode shapes of the studied 
structures. The results of location and severity detection show its efficiency in damage 
detection procedure. 

5- In order to get real simulations by CFNN, and also to decrease efficiently required 
training data sets, to determine the optimum number of training and testing data sets for 
development of ANN model, CFNN has been trained and tested using different number of 
datasets. Finally, 300 training and testing datasets were chosen. Using LHS method for data 
generation and the specific ANN good performance in deal with incomplete datasets 
concretely leads to detect sufficient number of required training and testing datasets. 
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